
Granularity 
The Principles of Package Cohesion 
 
1. Reuse-Release Equivalence Principle (REP) 
“The unit of re-use is the unit of release.” 

 
• In general, sets of collaborating classes are reused 
�package as the unit of reuse 
• Only packages that are tested and released through a 
tracking system 
can be effectively reused 
– introducing changes for re-users in a controlled way 
• If a package contains classes that should be reused, 
then it should not contain classes that are not designed for 
reuse. 
– either all classes in a package are reusable or none of 
them 
– group classes in packages from the perspective of their 
reusers 

 
Consequences 
• only changes in classes interesting to the reuser will lead 
to a new 
release of the package 
• avoiding accidental reuse of classes not designed for re-
use 
• reduced effort for 
– making releases 
– upgrades at the reuser side 
 
2.Common-Reuse Principle (CRP) 



“The classes in a package are reused together. If you 
reuse one of the 
classes in a package, you reuse them all.” 
 
• If the user is only interested in a part of a package 
– its code still depends on the whole package 
– own code has to be revalidated on any new release of 
the used package 
(even the change affects a class that is actually not used) 
• Classes that tend to be reused together belong in the 
same package 
(similar to Single-Responsibility Principle (SRP) for 
packages) 
• Classes that are not tightly bound to each other with 
class 
relationships should not be in the same package 
• We want to make sure that the classes in a single 
package are 
inseparable, i.e., it is impossible to depend on some and 
not the others 
�high cohesion 

 
 
 
3.Common-Closure Principle (CCP) 
“The classes in a package should be closed together 
against the same 
kinds of changes. A change that affects a package affects 
all the 
classes in that package and no other packages.” 
 
• The Single-Responsibility Principle says that a class 



should not 
contain multiple reasons to change 
• Analogously, the Common-Closure principle says that a 
package 
should not contain multiple reasons to change 
� All classes that are likely to change for the same 
reason should be 
packaged together 
• Note: The Open-Closure Principle states that classes 
should be closed 
for modification but open for extension 
• Full closure is not attainable; but, the common-closure 
principle makes 
the closure strategic by designing systems so that they are 
closed to 
the most common kinds of changes 
 
 
 
Stability 
The Principles of Package Coupling 
1.Acyclic-Dependencies Principle (ADP) 
 
• Goals 
– Stabilize and release the project in pieces 
– Avoid interference between developers ("The morning 
after"-Syndrome) by 
releasing packages as own units which do not immediately 
affect its users 
– Allow incremental integration 
• Acyclic-Dependencies Principle 



– Packages are releasable units of work 
– A working package is released and other developers can 
use it 
– Development takes place on a private copy of the 
package, while other 
use the released one 
– As a new version is available, developers can decide if 
they want to 
upgrade or keep the old version 
To make this process work: 
“Allow no cycles in the package-dependency graph.” 
 
• Directed Acyclic Graph (DAG) 
• Easy to find out who is affected by a change 
• Easy to make isolated tests 
• When it is time to release the whole system it is done 
bottom-up 
• The typical process of developing a package structure is 
bottom-up 
– As the software grows, we want to keep changes 
localized � Single- 
Responsibility Principle and Common-Closure Principle 
– When the software grows further, we are concerned with 
reusability and 
compose packages according to the Common-Reuse 
Principle 
– Finally, cycles appear and the Acyclic-Dependencies 
Principle is applied 
 
Developing the package structure top-down would fail: we 
don‘t know 



much about the common closure, we don‘t know the 
reusable 
elements and we would certainly create packages that 
produce cycles 
 
 
2.Stable-Dependencies Principle (SDP) 
„Depend in the direction of stability.“ 
 
• Designs cannot be completely static; we expect some 
packages to 
change! 
• Using the Common-Closure Principle, we create 
packages that are 
designed to be volatile 
• Although, changing a package designed to be volatile 
can be hard if 
several other packages depend on it 
�Modules intended to be easy to change may not depend 
on modules 
that are harder to change than they are 
- or in other words - 
Depend always on something which is more stable than 
you are 
 
• The stability of a package refers to the amount of work 
required to 
make a change 
• A stable, responsible package; three good reasons not to 
change 



 
• An instable, irresponsible package; free to change 

 

• Stability metrics 
– Ca Afferent Couplings: Number of classes outside this 
package that 
depend on classes within this package 
– Ce Efferent Couplings: Number of classes inside this 
package that depend 
on classes outside this package 
– I Instability: I = Ce / (Ca + Ce); 0 ≤ I ≤ 1 
• Example 

 



 
3.Stable-Abstractions Principle (SAP) 
„A package should be as abstract as it is stable.“ 
• Stable packages should also be abstract so that its 
stability does not 
prevent it from being extended 
• Instable packages should be concrete; its concrete code 
can be easily 
changed 
• The Stable-Abstractions Principle and the Stable-
Dependencies 
Principle correspond to the Dependency Inversion 
Principle for 
packages 
– Stable-Abstractions Principle: Dependencies should run 
in the direction of 
stability 
– Stable-Dependencies Principle: Stability implies 
abstraction 
� Dependencies run in the direction of abstraction 
• Abstraction metric 
– Nc Number of classes in the package 
– Na Number of abstract classes in the package 
– A Abstractness: A = NA / NC; 0 ≤ A ≤ 1 
 
Correlation of Stability and Abstractness 

 
• Abstract packages should be responsible and 
independent (stable) 
– Easy to depend on 
• Concrete packages should be irresponsible and 



can be dependent (instable) 
– Easy to change 
• Zone of pain: highly stable and concrete package 
– it is difficult to change because of its stability 
– it cannot be extended because it is not abstract 
– exceptions: typically utility packages, e.g. the string class 
• Zone of uselessness: packages that are maximally 
abstract, but have 
no dependents 
• Main sequence: packages that are not too abstract, not 
too instable 

 
Summary 
 

• Package cohesion 
– a cohesive package contains classes that implement one 
and only one 
responsibility 
– We extended the view of cohesion to packages 
– The opposing forces involved in reusability and 
developability need to be 
considered when packaging classes 



– Three principles guide the decisions to partition the 
classes 
• Package coupling 
– The complexity of a system is significantly determined by 
the number of 
dependencies in this system 
– Some dependencies are necessary, some others cause 
pain 
– The principles help in guiding the decisions to package 
classes in order to 
avoid bad dependencies 
– The dependency-management metrics measure the 
conformance of a 
design to a pattern of dependency and abstraction 
 
 
 


